Ma

KEY STAGE
3
ALL TIERS

2003

Mark scheme for Paper 2
Tiers 3-5, 4-6, 5-7 and 6-8

KEY STA

KEY STAC"
department for
education and skills
creating opportunity, releasing potential, achieving excellence

Introduction

The test papers will be marked by external markers. The markers will follow the mark scheme in this booklet, which is provided here to inform teachers.

This booklet contains the mark scheme for paper 2 at all tiers. The paper 1 mark scheme is printed in a separate booklet. Questions have been given names so that each one has a unique identifier irrespective of tier.

The structure of the mark schemes

The marking information for questions is set out in the form of tables, which start on page 10 of this booklet. The columns on the left-hand side of each table provide a quick reference to the tier, question number, question part, and the total number of marks available for that question part.

The Correct response column usually includes two types of information:

- a statement of the requirements for the award of each mark, with an indication of whether credit can be given for correct working, and whether the marks are independent or cumulative;

■ examples of some different types of correct response, including the most common.

The Additional guidance column indicates alternative acceptable responses, and provides details of specific types of response that are unacceptable. Other guidance, such as when 'follow through' is allowed, is provided as necessary.

Questions with a $U A M$ element are identified in the mark scheme by an encircled U with a number that indicates the significance of using and applying mathematics in answering the question. The U number can be any whole number from 1 to the number of marks in the question.

The 2003 key stage 3 mathematics tests and mark schemes were developed by the Mathematics Test Development Team at QCA.

General guidance

Using the mark schemes

Answers that are numerically equivalent or algebraically equivalent are acceptable unless the mark scheme states otherwise.

In order to ensure consistency of marking, the most frequent procedural queries are listed on the following two pages with the prescribed correct action. This is followed by further guidance, relating to marking of questions that involve money, time, coordinates, algebra or probability. Unless otherwise specified in the mark scheme, markers should apply the following guidelines in all cases.

What if ...
$\left.\begin{array}{|r|l|}\hline \begin{array}{r}\text { The pupil's response } \\ \text { does not match } \\ \text { closely any of the } \\ \text { examples given. }\end{array} & \begin{array}{l}\text { Markers should use their judgement in deciding whether the response } \\ \text { corresponds with the statement of requirements given in the Correct response } \\ \text { column. Refer also to the Additional guidance. }\end{array} \\ \hline \begin{array}{r}\text { The pupil has } \\ \text { responded in a } \\ \text { non-standard way. }\end{array} & \begin{array}{l}\text { Calculations, formulae and written responses do not have to be set out in any } \\ \text { particular format. Pupils may provide evidence in any form as long as its } \\ \text { meaning can be understood. Diagrams, symbols or words are acceptable for } \\ \text { explanations or for indicating a response. Any correct method of setting out } \\ \text { working, however idiosyncratic, is acceptable. Provided there is no ambiguity, } \\ \text { condone the continental practice of using a comma for a decimal point. }\end{array} \\ \hline \text { The pupil has made a } \\ \text { conceptual error. }\end{array} \begin{array}{l}\text { In some questions, a method mark is available provided the pupil has made } \\ \text { a computational, rather than conceptual, error. A computational error is } \\ \text { a slip such as writing } 4 \times 6=18 \text { in an otherwise correct long multiplication. } \\ \text { A conceptual error is a more serious misunderstanding of the relevant } \\ \text { mathematics; when such an error is seen no method marks may be awarded. } \\ \text { Examples of conceptual errors are: misunderstanding of place value, such as } \\ \text { multiplying by 2 rather than 20 when calculating 35 } \times 27 \text {; subtracting the }\end{array}\right\}$

What if ...

The final answer is wrong but the correct answer is shown in the working.	Where appropriate, detailed guidance will be given in the mark scheme and must be adhered to. If no guidance is given, markers will need to examine each case to decide whether: the incorrect answer is due to a transcription error;	If so, award the mark.
	in questions not testing accuracy, the correct answer has been given but then rounded or truncated;	If so, award the mark.
	the pupil has continued to give redundant extra working which does not contradict work already done;	If so, award the mark.
	the pupil has continued, in the same part of the question, to give redundant extra working which does contradict work already done.	If so, do not award the mark. Where a question part carries more than one mark, only the final mark should be withheld.
The pupil's answer is correct but the wrong working is seen.	A correct response should always be marked as correct unless the mark scheme states otherwise.	
The correct response has been crossed or rubbed out and not replaced.	Mark, according to the mark scheme, any legible crossed or rubbed out work that has not been replaced.	
More than one answer is given.	If all answers given are correct or a range of answers is given, all of which are correct, the mark should be awarded unless prohibited by the mark scheme. If both correct and incorrect responses are given, no mark should be awarded.	
The answer is correct but, in a later part of the question, the pupil has contradicted this response.	A mark given for one part should not be disallowed for working or answers given in a different part, unless the mark scheme specifically states otherwise.	

Marking specific types of question

Responses involving money For example: £3.20 f7	
Accept \checkmark	Do not accept \times
\checkmark Any unambiguous indication of the correct amount eg $£ 3.20$ (p), $£ 320, £ 3,20$, 3 pounds 20, £3-20, £3 20 pence, $£ 3: 20$, £7.00 \checkmark The $£$ sign is usually already printed in the answer space. Where the pupil writes an answer other than in the answer space, or crosses out the $£$ sign, accept an answer with correct units in pounds and/or pence eg 320 p , 700p	x Incorrect or ambiguous use of pounds or pence eg $£ 320, £ 320$ p or $£ 700$ p, or 3.20 or 3.20 p not in the answer space. x Incorrect placement of decimal points, spaces, etc or incorrect use or omission of 0 $\begin{array}{ll} \text { eg } & £ 3.2, £ 3 \text { 200, } £ 320, \\ & £ 3-2-0, \\ & £ 7.0 \end{array}$

Responses involving time A time interval For example: 2 hours 30 mins	
Accept $\sqrt{ }$	Take care ! Do not accept \times
\checkmark Any unambiguous indication eg 2.5 (hours), 2 h 30 \checkmark Digital electronic time ie 2:30	x Incorrect or ambiguous time interval eg 2.3(h), 2.30, 2-30, 2h 3, 2.30 min ! The time unit, hours or minutes, is usually printed in the answer space. Where the pupil writes an answer other than in the answer space, or crosses out the given unit, accept an answer with correct units in hours or minutes, unless the question has asked for a specific unit to be used.
A specific time For example: 8.40am, 17:20	
Accept $\sqrt{ }$	Do not accept \times
\checkmark Any unambiguous, correct indication eg 08.40, 8.40, 8:40, 0840, 840 , $8-40$, twenty to nine, 8,40 \checkmark Unambiguous change to 12 or 24 hour clock eg 17:20 as $5: 20 \mathrm{pm}, 17: 20 \mathrm{pm}$	x Incorrect time eg 8.4am, 8.40pm x Incorrect placement of separators, spaces, etc or incorrect use or omission of 0 eg 840, 8:4:0, 084, 84

Responses involving coordinates

For example: (5,7)

Accept \checkmark	Do not accept \times
```\checkmark ~ U n a m b i g u o u s ~ b u t ~ u n c o n v e n t i o n a l ~ notation eg (05,07) ( five, seven ) (\begin{array}{l}{x}\\{5,}\\{7}\end{array}) (x=5, y=7)```	x Incorrect or ambiguous notation   eg $(7,5)$   (5x, 7y)   $(x 5, y 7)$   $\left(5^{x}, 7^{y}\right)$

Responses involving the use of algebra
For example: $2+n \quad n+2 \quad 2 n$

Accept $\checkmark$	Take care ! Do not accept $\times$
$\checkmark$ The unambiguous use of a different case   eg $N$ used for $n$   $\checkmark$ Unconventional notation for multiplication   eg $n \times 2$ or $2 \times n$ or $n 2$ or $n+n$ for $2 n$ $n \times n$ for $n^{2}$   $\checkmark$ Multiplication by 1 or 0   eg $2+1 n$ for $2+n$ $2+0 n \text { for } 2$   $\checkmark$ Words used to precede or follow equations or expressions   eg $t=n+2$ tiles or tiles $=t=n+2$   for $t=n+2$   $\checkmark$ Unambiguous letters used to indicate expressions $\text { eg } t=n+2 \text { for } n+2$   $\checkmark$ Embedded values given when solving equations   eg $3 \times 10+2=32$   for $3 x+2=32$	! Words or units used within equations or expressions should be ignored if accompanied by an acceptable response, but should not be accepted on their own   eg do not accept $n \text { tiles }+2$ $n \mathrm{~cm}+2$   x Change of variable   eg $x$ used for $n$   x Ambiguous letters used to indicate expressions $\text { eg } \quad n=n+2$   However, to avoid penalising any of the three types of error above more than once within each question, do not award the mark for the first occurrence of each type within each question. Where a question part carries more than one mark, only the final mark should be withheld.   x Embedded values that are then contradicted   eg for $3 x+2=32$,   $3 \times 10+2=32, x=5$

## Responses involving probability

A numerical probability should be expressed as a decimal, fraction or percentage only.

For example: 0.7

Accept $\checkmark$	Take care ! Do not accept $\times$
$\checkmark$ A correct probability that is correctly expressed as a decimal, fraction or percentage.   $\checkmark$ Equivalent decimals, fractions or percentages $\text { eg } \quad 0.700, \frac{70}{100}, \frac{35}{50}, 70.0 \%$   $\checkmark$ A probability correctly expressed in one acceptable form which is then incorrectly converted, but is still less than 1 and greater than 0   eg $\quad \frac{70}{100}=\frac{18}{25}$	The following four categories of error should be ignored if accompanied by an acceptable response, but should not be accepted on their own.   ! A probability that is incorrectly expressed   eg 7 in 10, 7 out of 10, 7 from 10   ! A probability expressed as a percentage without a percentage sign.   ! A fraction with other than integers in the numerator and/or denominator.   However, each of the three types of error above should not be penalised more than once within each question. Do not award the mark for the first occurrence of each type of error unaccompanied by an acceptable response. Where a question part carries more than one mark, only the final mark should be withheld.   ! A probability expressed as a ratio eg $7: 10,7: 3,7$ to 10   * A probability greater than 1 or less than 0

## Recording marks awarded on the test paper

All questions, even those not attempted by the pupil, will be marked, with a 1 or a 0 entered in each marking space. Where 2 m can be split into 1 m gained and 1 m lost, with no explicit order, then this will be recorded by the marker as 1

The total marks awarded for a double page will be written in the box at the bottom of the right-hand page, and the total number of marks obtained on the paper will be recorded on the front of the test paper.

A total of 120 marks is available in tiers $3-5,4-6$ and $6-8$.
A total of 122 marks is available in tier 5-7.

## Awarding levels

The sum of the marks gained on paper 1, paper 2 and the mental mathematics paper determines the level awarded. Level threshold tables, which show the mark ranges for the award of different levels, will be available on the QCA website www.qca.org.uk from Monday 23 June 2003. QCA will also send a copy to each school in July.

Schools will be notified of pupils' results by means of a marksheet, which will be returned to schools by the external marking agency with the pupils' marked scripts. The marksheet will include pupils' scores on the test papers and the levels awarded.

Tier \& Question						Hexagons
3-5	4-6	5-7 6	6-8			
1					Correct response	Additional guidance
a				1m	Gives a correct explanation eg   - Each shape has six sides   - They all have six corners   - 6 sides	$\checkmark$ Minimally acceptable explanation   eg   - 6 edges   - 6 lines   - 6 points   ! Incorrect statement alongside a correct explanation   Condone   eg, accept   - 6 equal sides
b				1m	Draws a regular hexagon of any size with vertices on the dots of the grid	! Lines not ruled or accurate   Accept provided the pupil's intention is clear   ! Internal lines shown   Ignore provided the outer shape is a regular hexagon   eg, accept


Tier \& Question					Cities	
3-5	4-6 5	5-7 6-8				
2				Correct response	Additional guidance	
a			1m	172		
b			1 m	Indicates York and London, in either order		
c			1m	Indicates London and gives the value 13		
d			$2 \mathrm{~m}$   or 1m	332   Shows the three correct values 120, 91 and 121 or   Shows three values, two of which are correct, then adds them correctly eg   - $120+91+134($ error $)=345$		


Tier \& Question					Number cards
3-5	4-6 5	5-7 6-8			
3				Correct response	Additional guidance
a			1m   1m	Four hundred and nine or   Nine hundred and four   Four hundred and ninety or   Nine hundred and forty	$\checkmark$ Correct words even if cards not completed, or completed incorrectly   ! Digits used   Accept provided the place value is interpreted eg, for the first mark, accept   - 4 hundred and 9   - 400 and 9   - 400 and 9 units   ! Omission of the word 'and'   Accept if unambiguous   eg, for the first mark, accept   - Four hundred nine   - 4 hundred - nine   - 4 hundreds 9 units   - 4 hundred + nine   - $400+9$   eg, for the first mark, do not accept   - 4009   ! Within their number in words, digits other than 4 and 9 used Provided both their digits are non-zero, and the number shown by the cards and the number in words are the same, penalise only the first occurrence Otherwise, do not accept   $\times$ Place value not interpreted   eg, for the first mark   - Four, zero and nine
b			$\begin{array}{\|c} 1 \mathrm{~m} \\ 1 \mathrm{~m} \\ \hline \mathrm{U1} \\ \hline \end{array}$	$853$ $538$	




Tier \& Question			Buying a bicycle		
3-5	4-6 5	5-7 6-8			
6				Correct response	Additional guidance
				£ 26.89   Shows the digits 20688   or   Shows or implies a correct method eg   - $8.62 \times 24-179.99$   - 27 with no evidence of an incorrect method   - -26.89   - Digits 2689 seen	! Answer rounded to 27   Accept for 2 m only if a correct method or a more accurate value is seen   $\times$ For $2 m$, negative value   eg   - -26.89   ! Incorrect order for subtraction   Condone   eg, accept   - $179.99-8.62 \times 24$


Tier \& Question						Kings and queens
3-5	4-6	5-7	6-8			
8	1				Correct response	Additional guidance
a	a			1 m	50	
b	b			1 m	Elizabeth (I)	$\times$ Point identified but not interpreted eg - f
c	c			1 m	Indicates (81, 63) on the chart	! Point not accurately indicated Accept provided the point is nearer to $(81,63)$ than to any other point with integer coordinates


Tier \& Question					School uniform
3-5	4-6	5-7 6-8			
7	2			Correct response	Additional guidance
a	a		1m	54	
b	b		1m	16	
c	c		$2 \mathrm{~m}$   or $1 \mathrm{~m}$	Gives all three correct values correctly positioned, ie 10, 20, 10   Gives any two correct values correctly positioned   or   Gives three values that sum to 40 , one of which is correct and correctly positioned   or   Gives the correct value for No, ie 20, and gives values for Yes and Don't know that are the same   eg   5,20, 5	
d	d		1m   (U1)	Gives two labels in the two boxes of either the first row or the first column specifying sex and gives two labels in the two boxes of either the first row or the first column specifying yes or no, or other mutually exclusive labels that address the question   eg, for sex   - Boys, girls   - Female, male   - G, B   eg, for yes or no   - Yes, no   - $\boldsymbol{J}, \mathrm{x}$   - N, Y   - Have a pet, Do not have a pet	


Tier \& Question					Admission
3-5		5-7 6-8			
9	3			Correct response	Additional guidance
			$\begin{gathered} 3 \mathrm{~m} \\ \\ \text { or } \\ 2 \mathrm{~m} \end{gathered}$	£ 5.65   Shows the digits 565   eg   - 56.50   or   Shows the values 11.15 and 16.8(0)   or   Shows one of the values 11.15 or 16.8(0), then follows through using their incorrect value to give their correct saving   eg   - 11.15 before,   $4.90+3.50+3.50+4.90=14.80$ (error) after,   $14.80-11.15=3.65$   or   Shows the correct difference for each category eg   - $1.7,1,1.95$   - $1.7+2 \times 1+1.95$   or   Shows the correct difference for two of the categories, then follows through using their incorrect difference to give their correct saving eg   - $1.7+1+1+1.85($ error $)=5.55$   or   Shows the value $£ 4.65$ (from calculating using one child, rather than two)	! Values or differences shown in working in pence, without units given Accept for 2 m , provided both values or all differences are in pence


Tier \& Question					Admission (cont)
3-5	4-6 5	5-7 6-8			
9	3			Correct response	Additional guidance
			$\begin{gathered} o r \\ 1 \mathrm{~m} \end{gathered}$	Shows any of the following:   Digits 1115   or   Digits 168(0)   or   Any two of the correct differences   1.7(0), 1, 1.95   or   Digits 465 (from calculating using one child, rather than two)   or   The values 8.65 and $13.3(0)$ (from calculating using one child, rather than two)	! Values or differences shown in working in pence, without units given Accept for 1m


Tier \% Question					Cubes in bags
12	4			Correct response	Additional guidance
a	a		1m	27	
b	b		2 m   or   1m	Both correct, ie 24 and 28, either order   At least one correct and not more than one incorrect   eg   - $20,24,28$   - 24,27   or   Gives the values 6 and 7	


Tier \& Question				Temperature		
3-5	4-6	5-7	6-8			
10	5				Correct response	Additional guidance
a	a			1m	1.5 or equivalent	
b	b			1m	37.9 or equivalent	
c	c			$\begin{gathered} 2 \mathrm{~m} \\ \\ \text { or } \\ 1 \mathrm{~m} \end{gathered}$	46.5 or equivalent   Shows or implies a complete correct method with not more than one error eg   - $(115.7-32) \times 5 \div 9$   - $\frac{115.7-32}{9} \times 5$   - $115.7-32=82.7$ (error), $82.7 \times 5 \div 9=45.9(\ldots)$   - 46   - 47   - Digits 465 seen	! For 1m, necessary brackets omitted As this is a level 4 mark, condone eg, accept   - $115.7-32 \times 5 \div 9$


Tier \& Question						Drawing
3-5	4-6	5-7	6-8			
11	6	1			Correct response	Additional guidance
a	a	a		1m	Draws a rectangle of area 12 eg   - 1 by 12   - 2 by 6   - 3 by 4   - 1.5 by 8	! Lines not ruled or accurate Accept provided the pupil's intention is clear   $\checkmark$ Edge of grid used as edge of shape
b	b			1m	Draws a rectangle of area 12 , with different dimensions from one credited in part (a)	
c	c	b		1m	Draws a triangle of area 6 eg   - Base 6, perpendicular height 2   - Base 4, perpendicular height 3   - Base 5, perpendicular height 2.4	

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Tier \& Question} \& \& \& \multirow[b]{2}{*}{Ages} <br>
\hline 3-5 \& 4-6 \& 5-7 \& 6-8 \& \& \& <br>
\hline 14 \& 7 \& 2 \& \& \& Correct response \& Additional guidance <br>
\hline a \& a \& a \& \& $2 m$

or

$1 m$ \& | Gives complete correct interpretations for both Barry and Carol, by referring to both the following aspects: |
| :--- |
| The given context of age |
| The meaning of the given numbers and operations |
| eg, for Barry |
| - One year younger (than Tina) |
| - Aged one less (than T) |
| eg, for Carol |
| - Twice as old (as T) |
| - Double her age |
| - $2 \times$ Tina years old |
| Gives a complete correct interpretation for either Barry or Carol by referring to both aspects |
| or |
| Gives interpretations for both Barry and Carol that give the meaning of the given numbers and operations but contain no reference to the given context of age eg |
| - For Barry, Tina minus 1 For Carol, Twice Tina | \& | ! Incomplete interpretation |
| :--- |
| Do not accept as complete an interpretation that lacks reference to one of the two aspects eg, for Barry |
| - Tina minus 1 [no reference to the given context] |
| - Younger [no reference to the -1 ] |
| - One year different [ambiguous reference to subtraction] |
| eg, for Carol |
| - Twice Tina [no reference to the given context] |
| - Much older than Tina [no reference to the $\times 2$ ] |
| - 2 Tina's age [no reference to the multiplication] |
| ! Interpretation using comparison with age of person other than Tina |
| Accept provided the interpretation is unambiguous |
| eg, accept as complete and correct for Barry |
| - Four years younger than Ann | <br>

\hline
\end{tabular}

Tier \& Question						Ages (cont)
3-5	4-6	5-7	6-8			
14	7	2			Correct response	Additional guidance
b	b	b		$2 \mathrm{~m}$   or 1m	Gives all three correct expressions in their simplest forms   eg $n+4, n, 2 n+1$   Gives any two correct expressions in their simplest forms   or   Gives all three correct expressions, even if not simplified	$\checkmark 1 n$ or $n 1$ for $n$ in a fully simplified expression   $\times n \quad 0$ as a fully simplified expression for $n$   ! Use of multiplication sign   If a multiplication sign is used, an expression cannot be accepted as fully simplified eg, for Carol, do not accept as fully simplified   - $2 \times n+1$
c	c	c		$1 \mathrm{~m}$ $1 \mathrm{~m}$	61 $62$	$\times$ Incomplete processing eg , for the first mark $\text { - } 2 \times 30+1$   eg, for the second mark $\cdot 2 \times 31$   $\times$ Incorrect notation eg, for the first mark - 61 n


Tier \& Question						Grid percentages
3-5	4-6	5-7	6-8			
13	8	3			Correct response	Additional guidance
a	a	a		$1 \mathrm{~m}$ $1 \mathrm{~m}$	$60$ $60$	! Percentage of diagram not shaded given Provided correct percentage unshaded is given consistently, ie 40 given for both, mark as 0,1
b	b	b		1m	Gives a correct explanation in which both $\frac{1}{8}$ and the link to $100 \%$ are shown or implied eg   - It's $\frac{1}{8}$ and $\frac{1}{8}$ of 100 is $12 \frac{1}{2}$   - 1 out of 8 is equivalent to 12.5 out of 100   - $8 \times 12 \frac{1}{2}=100$   - $100 \div 8=12.5$   - It's $\frac{1}{8}$, and $1 \div 8=0.125$	$\checkmark$ Minimally acceptable explanation   eg   - 8 squares is 100 so 1 is $12 \frac{1}{2}$   - $100 \div 8$   - 100 divided by the number of squares   - $\frac{1}{8}=0.125$   ! The link is to a different percentage Accept provided the relevant fraction is shown or implied   eg, accept   - 2 squares is $25 \%, 1$ square is half of that   - 4 squares is $50 \%, 50 \div 4$   $\times$ Incomplete explanation   eg   - 8 squares is $100 \%$   - 1 square out of 8 shaded   - $12 \frac{1}{2} \%=\frac{1}{8}$   $\mathbf{x}$ Incorrect order of division   eg   - $8 \div 100=12 \frac{1}{2}$
c	c	c		1m	Indicates a total of three squares on the diagram	


Tier \& Question				Data collection		
3-5	4-6	5-7				
15	9	4			Correct response	Additional guidance
a	a	a		1m	Indicates 1 or 2 and gives a correct explanation   eg, for 1   - It will take a lot of time to write the name every time   - You won't have time to put the whole name   - It will not tell you straightaway how many of each type there are   - It will just give a long list of words   - It would take ages to count up all the trees at the end   - You could easily miscount the totals   - It's hard to draw a graph from it   - It will take up a lot of paper   eg, for 2   - It will not tell you straightaway how many of each type there are   - It will just give a long list of letters   - It would take ages to count up all the trees at the end   - You could easily miscount the totals   - It's hard to draw a graph from it   - It will take up a lot of paper   - Some names of trees might start with the same letter   - You might not have a code for the type of tree you see	$\checkmark$ Minimally acceptable explanation for 1 or 2 eg   - Too long   - Not efficient   - It does not tell you how many there are   ! Explanation for 1 or 2 that refers to an improvement to the design   Accept provided the improvement relates to one of the correct explanations   eg, for 1 , accept   - It's quicker to write only the first letter eg, for 1 or 2, accept   - Using a tally chart tells you how many there are   eg, for 1 or 2 , do not accept   - Using a tally chart is better   $\mathbf{x}$ Explanation for 1 or 2 that refers to pupils not knowing what type the trees are eg   - They might not know the trees' names   $\times$ Explanation for 2 that refers to use of codes eg   - They might find the codes confusing   - They could forget the key   - It does not list the actual names
b	b	b		1m	Indicates 3 and gives a correct explanation eg   - It is quick to do a tally chart   - Tally marks are easy to write   - It's easy to see the number of each type   - It shows clearly which types are most common   - It's easy to see the mode   - You can count up the totals quickly   - It is less likely you will miscount   - It's more likely to be accurate   - It's easy to draw a graph from a tally chart   - It does not take up much space	$\checkmark$ Minimally acceptable explanation   eg   - It's quick   - It's efficient   - You just put a line   - It collects the data together   - It's easy to understand   - It's simple to use   - It's organised   - It tells you how many there are   $\times$ Incomplete explanation   eg   - It's easy   - It's simple   - It's effective   - It's clear   - It can be understood   - It's not confusing   ! Reference to disadvantages of the design eg   - There might be lots of 'Other' and they will not know what type they were   - They have to decide in advance which sorts to include   Ignore alongside a correct explanation


Tier \& Question						Coins
3-5	4-6	5-7	6-8			
16	10	5			Correct response	Additional guidance
a	a	a		1m	Gives a correct explanation eg   - $\frac{2}{4}=\frac{1}{2}$   - Two of the four coins are 10 p so half of them are 10 p   - 20 p is $\frac{1}{4}$, so is 1 p , and $\frac{1}{4}+\frac{1}{4}+\frac{1}{2}=1$   - Each coin has $\frac{1}{4}$ chance and $\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$	$\checkmark$ Minimally acceptable explanation   eg   - $\frac{2}{4}$   - Two out of four   - Two is half of four   - Two are tens, two not   $\times$ Incomplete explanation   eg   - It's 50/50   - There are two tens, a twenty and a 1 p   - There are two 10ps   - Half the coins are 10 ps   - 20p is $\frac{1}{4}$, so is 1 p
b	b	b			Identifies the values of the four coins as $20,10,2$ and 1 and gives the probability $\frac{1}{4}$, or equivalent probability	! Values of coins identified but doubt expressed as to whether this is the only possible combination Condone   $\times$ Probability stated without values of coins identified


Tier \& Question			Explaining why		
3-5	4-6 5	5-7 6-8			
17	11	6		Correct response	Additional guidance
			1m	Indicates AD and CD are both 12 , and justifies that triangle ACD is equilateral eg   - The sides are the same length   - All sides are 12   - $\mathrm{AC}=\mathrm{AD}=\mathrm{CD}$	$\checkmark$ Minimally acceptable justification   eg   - Sides are the same   - They are equal   $\times$ Incorrect justification   eg   - The sides are even   ! Reference to angles   Ignore, ie do not accept a justification based on angles alone and do not penalise incorrect information about angles given alongside a correct response
			1m	Indicates angle $y$ is 60 and gives a correct justification either as a calculation or as a known fact eg   - $180 \div 3$   - $60 \times 3=180$   - That's how many degrees there are in one angle in an equilateral triangle	$\checkmark$ Minimally acceptable justification   eg   - $60 \times 3$   - $60+60+60$   - All the angles are the same   × Incomplete justification   eg   - Angles in a triangle add up to 180   ! Incorrect notation   Ignore for both this mark and the next eg, for angle $y$ as 60 , accept   - $60^{\circ} \mathrm{C}$
			(1m	Indicates angle $x$ is 30 and gives a correct justification eg   - Triangle ADB is a reflection of triangle ABC so $x$ is half $y$   - All angles in an equilateral triangle are $60^{\circ}$ The reflection shows half so it must be $30^{\circ}$   - Angles in ABC add up to 180 , and $180-90-60=30$	$\checkmark$ Minimally acceptable justification   eg   - $x$ is half $y$   - $2 x=y$   - $60 \div 2$   - It is half   - 180 - $90-60$   ! Follow through   Accept for angle $x$ as their $y \div 2$ provided it is accompanied by a correct justification that either does not use a value for $y$ or uses their value for $y$, and provided their $y$ is not 0,90 or greater than or equal to 180


Tier \& Question							Water
3-5	4-6	5-7	6-8				
18	12	7			Correct response	Additional guidance	
a	a	a		$2 \mathrm{~m}$   or $1 \mathrm{~m}$	Shows a complete correct method eg   - $\frac{1.8 \times 1000}{225}$   - $1.8 \div 0.225$   - $225 \times 2=450$   $450 \times 2=900$   $900 \times 2=1800$   $2 \times 2 \times 2$   or   Shows the value 1800 or 0.225	$\checkmark$ Value qualified eg   - About 8	
b	b	b		1 m	48		


Tier				Correct response		Ratio of ages
3-5	4-6	5-7	6-8			
	13	8	1			Additional guidance
	a	a	a	1m	7:5	! Ratio correct but not written as simply as possible Provided there is no incorrect simplification, penalise only the first occurrence
	b	b	b	1m	7:6	! Incorrect order   If the only error is to write each ratio in the incorrect order, ie 5:7 and 6:7, do not award the mark for part (a) but award the mark for part (b)
	c	c	c	1m	Indicates No and gives a correct explanation eg   - That would make their ages equal which is not possible as the sister is 6 years younger   - They will never be the same age as he is always 6 years older   - To make them the same age, Paul would have to stop getting older for a number of years	$\checkmark$ Minimally acceptable explanation   eg   - They'd be the same   - They are not the same age   - His sister is 6 years younger   - Paul is older   - They were born in different years   - That would mean Paul had stopped getting older for a number of years   - That means they would've had to be the same age in the first place   $\times$ Incorrect statement   eg   - She will always be 8 years younger   $\mathbf{x}$ No or incomplete interpretation   eg   - $7: 7$ is the same as $1: 1$   - It wouldn't be equal



	Tier \& Question			Nets		
3-5	4-6	5-7	6-8			
	15	10	3		Correct response	Additional guidance
	a	a	a	1m	Shows that the surface areas are different   The most common correct explanations:   Calculate A as 38 , B as 32   eg   - A is $4 \times 8+6=38, \mathrm{~B}$ is $3 \times 8+8=32$   State that the difference is 6   eg   - A has 6 more squares than B   Manipulate the nets to a form where comparison may be drawn without further computation eg   - A is $6 \times 8-10$ but B would be $6 \times 8-16$	$\checkmark$ Minimally acceptable explanation   eg   - 38, 32   - $4 \times 8+6$ isn't the same as $3 \times 8+8$   - 6 more   $\times$ Incomplete explanation   eg   - I counted the squares   - There are more squares in A than in B   ! Units given   Ignore   eg, accept   - $38^{2} \mathrm{~cm}, 32^{2}$
	b	b	b	$2 \mathrm{~m}$   or 1m	Shows that the volume of A is equal to that of B eg   A:   B:   - A is $3 \times 4 \times 1=12$,   B is $2 \times 3 \times 2=12$   - $3 \times 4 \times 1=2 \times 3 \times 2$   - A is one layer of 12 cubes and $B$ is two layers of 6 cubes   Shows the value 12, with no evidence of an incorrect method for this value	$\checkmark$ Minimally acceptable explanation   eg   - Both 12   - 12, 12   $\times$ Incomplete explanation   eg   - Both the same   ! Units given   Ignore   ! Responses to parts (a) and (b) transposed but otherwise correct Mark part (a) as 0 but mark part (b) as 1, 0



Tier	\& Q	Questi		Beaches (cont)		
3-5	\%-54.6.5-76-8	5-7	6-8			
	16	11	4		Correct response	Additional guidance
	c	c	c	1 m	Explains that there are fewer animals altogether on the cleaned beach, and also refers to at least one of the following aspects:   The presence or increase of flies   The smaller proportion of sandhoppers or beetles   The relative proportions of sandhoppers or beetles   The increase in the number of species   eg   - Attracts some flies, but fewer animals overall   - There are much less of them, and they're not all sandhoppers and beetles   - There aren't as many animals, and a smaller percentage of them are sandhoppers   - The numbers have gone down, but there are always more beetles than anything else   - Without cleaning you get more animals but fewer types of animals	! Follow through from parts (a) and (b) Do not accept if their incorrect values lead to different conclusions about the changes. However condone use of their incorrect values within an otherwise correct statement   $\mathbf{x}$ Values stated without interpretation eg   - There were 1620 animals on the uncleaned beach and 15 on the cleaned, with $33 \%$ sandhoppers on the uncleaned and $13 \%$ on the cleaned   $\times$ No reference to the change in the total number of animals   eg   - It attracts some flies but kills sandhoppers and beetles



Tier \& Question						Star design
3-5	4-6	5-7	6-8			
	18	13	6		Correct response	Additional guidance
		a	a	$2 \mathrm{~m}$   or 1m	Shows a complete correct method with not more than one computational error eg   - $26 \times 6=156$, $360-156=204$, $204 \div 6$   - $(360 \div 6)-26$   - $(180-3 \times 26) \div 3$   - $w+26=60$, so $60-26$   - $360-156=214$ (error)   $\frac{214}{6}=35.6(\ldots)$	! Decimal values rounded or truncated Condone
		b	b	$2 \mathrm{~m}$   or $1 \mathrm{~m}$	Shows a complete correct method with not more than one computational error eg   - $180-(13+13)=154$ $360-2 \times 154$   - $26 \times 2$   - $180-2 \times 13=157$ (error) $180-157=23$   $23 \times 2=46$	


Tier \& Question						Ks and ms
3-5	4-6	5-7	6-8			
	19	14	7		Correct response	Additional guidance
		a	a	1 m   1m	Draws any shape with perimeter $4 k+m$ eg   Draws any shape with perimeter $2(2 k+m)$ eg	! Lines not ruled or drawn accurately Accept provided the pupil's intention is clear   ! Multiple attempts with some incorrect Accept provided it is clear which is the pupil's final answer
		b	b	1m	Gives a correct expression eg   - $2 m^{2}$   - $2 \times m^{2}$   - $2 m \times 2 m \div 2$	! Units given Ignore   $\times$ Correct expression that is incorrectly simplified eg, for part (b)   - $2 m \times m=3 m$
		c	c	1m	Gives a correct expression eg   - $4 k^{2}$   - $4 \times k^{2}$   - $4 k \times 2 k \div 2$   - $(4 k \times 4 k) \div 4$	


Tier \& Question						Ks and ms (cont)
3-5	4-6 5	5-7				
	19	14	7		Correct response	Additional guidance
		d	d	1 m	Gives a correct explanation   eg   - They are the same triangle so $2 m^{2}=4 k^{2}$ hence $m^{2}=2 k^{2}$   - The areas of the triangles are equal, and if you divide $2 m^{2}$ by 2 you get $m^{2}$, divide $4 k^{2}$ by 2 you get $2 k^{2}$   - If you multiply both sides by 2 , you get the areas of the two triangles. Since they are the same, they must be equal	$\checkmark$ Explanation uses Pythagoras' theorem eg   - Using Pythagoras, $m^{2}=k^{2}+k^{2}$   $\checkmark$ Minimally acceptable explanation   eg   - $2 m^{2}=4 k^{2}$   ! Explanation equates expressions for parts   (b) and (c) that are correct but not simplified Accept as minimal provided neither expression is a quotient or includes a division sign   eg, accept   - $2 \times m \times m=2 \times k \times 2 \times k$   eg, do not accept   - $2 m \times 2 m \div 2=4 k \times 2 k \div 2$   ! Follow through   Accept only if both parts (b) and (c) are incorrect, but not $m^{2}$ and $2 k^{2}$, and neither expression is a quotient or contains a division sign, and they lead to the relationship shown in part (d) eg, from (b) as $4 m^{2}$ and (c) as $8 k^{2}$, accept   - $4 m^{2}=8 k^{2}$   $\times$ Incomplete explanation   eg   - The areas of the triangles are equal   - Divide them by 2


Tier \& Question					Giraffe
3-5	4-6 5-7	6-8			
	15	8		Correct response	Additional guidance
			$3 m$  	Gives a correct answer in days, ie 14 or 14.1 or 14.2 or $14.16(\ldots)$   or   Gives a correct answer in days and hours, ie 14 days and 4 hours   Shows a complete correct method, with not more than one computational error eg   - $1.3 \times 24=31.2 \mathrm{~cm}$ per day, $600-158=442 \mathrm{~cm}$ to grow, $442 \div 31.2$   - $600-158=442$   $442 \div 1.3=340$   $340 \div 24$   - $6-1.58=4.42$   $4.42 \div 0.013 \div 24$   - $\frac{600}{31.2}-\frac{158}{31.2}$   or   Gives an answer of 15	! Answer of 15   For 3 m , do not accept unless a correct method or a more accurate value is seen eg, accept   - $31.2 \times 10=312,31.2 \times 5=156$   so 15 days $=626 \mathrm{~cm}$   ! Range of values given   Accept range between 14 and 15 inclusive eg, accept   - 14 to 15   ! Method used is trial and improvement or counting on   For 3 m , do not accept a correct value shown in working unless it has been identified as the answer   eg, accept   - $158+14 \times 31.2=594.8$ so 14 days   For 2 m , accept trial and improvement and counting on as types of correct method eg, accept $\begin{gathered} 158+14 \times 31.2=594.8 \\ 0 \text { days }=1.58 \\ 1 \text { day }=1.892 \\ \vdots \\ 14 \text { days }=5.948 \end{gathered}$   $\checkmark$ For $2 m$, values approximated to 2 significant figures or better eg   - $1.3 \times 24$ is about 31 cm per day Needs to grow about 440 cm $440 \div 31$   - 0 days $=1.58$   1 day $=1.89$   : :   14 days $=5.92$   $\times$ For $2 m$, inconsistent units   eg $4.42 \div 1.3 \div 24$



Tier \& Question			Long-eared owls		
3-5	4-6 5-7	6-8			
	16	9		Correct response	Additional guidance
	a	a	1 m	Shows a complete correct method eg $\begin{aligned} & \text { - } 1 \times 9+2 \times 17+3 \times 24+4 \times 6+5 \times 5+ \\ & 6 \times 1 \\ & -\quad 9+34+72+24+25+6 \end{aligned}$	$\checkmark$ Correct description of method   eg   - Multiply the number of mammals found by the frequency, then add them   $\times$ Incomplete method   eg   - 9, 34, 72, 24, 25, 6   - Multiply the number of mammals found by the frequency
	b	b	$2 \mathrm{~m}$   or $1 \mathrm{~m}$	2.7   Shows or implies a correct method eg   - 2.74(...)   - $170 \div 62$   - $170 \div(9+17+24+6+5+1)$	
	c	c	$2 \mathrm{~m}$   or $1 \mathrm{~m}$	38000   Shows or implies a complete correct method eg   - $2.7(\ldots) \times 1.4 \times 10000$   - 37800   - 38387   - Their (b) $\times 14000$   or   Shows the digits 38	$\checkmark$ For $2 m$, follow through from part (b) as their $(b) \times 14000$, rounded to the nearest thousand, provided their (b) is such that rounding is required




Tier \& Question						Coffee (cont)
3-5	4-6 5	5-7	6-8			
		18	11		Correct response	Additional guidance
			b	$\begin{array}{\|c} 2 \mathrm{~m} \\ \\ \text { or } \\ 1 \mathrm{~m} \end{array}$	Gives the value $£ 1.91$ or $£ 1.92$   Shows or implies a complete correct method with not more than one computational or rounding error eg   - $\frac{0.44}{23} \times 100$   - $\frac{44}{23}$   - $23 \%=44$   $10 \%=19$   $67 \%=127$ (rounding error)   So $£ 1.90$   or   Shows the digits $191(\ldots)$ or 192   eg   - 191   - 19.13	! Method used is trial and improvement Accept correct values from this method for 2 m , but do not accept as a complete correct method for 1 m



Tier \& Question					Populations
3-5	4-6 5	5-7 6-8			
		13		Correct response	Additional guidance
		a	$1 \mathrm{~m}$ $1 \mathrm{~m}$	India   Gambia	$\checkmark$ Unambiguous indication eg   - $1.0 \times 10^{9}$ for India
		b	3 m   or 2m   or   1m	Gives a correct value with no evidence of an incorrect method   eg   - 220   Shows correct values for both countries eg   - UK 250, US 30.(...)   or   Shows or implies a complete correct method with not more than one computational error eg   - $6.0 \times 10^{7} \div 2.4 \times 10^{5}$ then subtract   $2.8 \times 10^{8} \div 9.3 \times 10^{6}$   - $250-2.8 \times 10^{8} \div 9.3 \times 10^{6}$   - Answer of -220   Shows a correct method or value for one of the countries   eg   - $6.0 \times 10^{7} \div 2.4 \times 10^{5}$   - $2.8 \times 10^{8} \div 9.3 \times 10^{6}$	! Limits used or answer not given to $2 s f$ Accept values in the following ranges: Difference 212 to 229 inclusive UK 242 to 258 inclusive US 29 to 31 inclusive   $\times$ For $3 m$ or $2 m$, incorrect method   eg   - $2.8 \times 10^{8}-6 \times 10^{7}$   ! Incorrect order of division   Do not treat as a misread, ie do not accept


Tier \& Question					Joining
3-5	4-6 5	5-7 6-8			
		14		Correct response	Additional guidance
		a	$\begin{gathered} 2 \mathrm{~m} \\ \\ \\ \\ \text { or } \\ 1 \mathrm{~m} \end{gathered}$	Gives a complete correct justification eg $\text { - } \begin{aligned} & \mathrm{AC}=\sqrt{ }\left(28.8^{2}+12^{2}\right)=31.2 \\ & \mathrm{CD}=\sqrt{ }\left(5^{2}+12^{2}\right)=13 \\ & 31.2+13+28.8+5 \end{aligned}$   Shows at least one of the values 31.2, 13 or 44.2	$\checkmark$ Minimally acceptable justification eg   - $31.2+13+28.8+5$   - $31.2+13+33.8$   - $78-28.8-5-13-31.2=0$
		b		Gives a correct justification eg $\begin{aligned} & 33.8^{2}=1142.44 \\ & 13^{2}+31.2^{2}=169+973.44=1142.44 \end{aligned}$   Pythagoras' theorem works so ACD is right-angled   - $5 \times 2.4=12$ and $12 \times 2.4=28.8$   so $A B C$ and BCD are similar right-angled triangles, and $\begin{aligned} \text { Angle } \begin{aligned} \mathrm{ACD} & =\text { angle } \mathrm{ACB}+\text { angle } \mathrm{BCD} \\ & =\text { angle } \mathrm{CDB}+\text { angle } \mathrm{BCD} \\ & =90^{\circ} \end{aligned} .=\text {. } \end{aligned}$   - Area of ACD $\begin{aligned} & =\frac{1}{2} \mathrm{AD} \times \mathrm{BC}=\frac{1}{2} \times 33.8 \times 12=202.8 \\ & \text { and } \frac{1}{2} \mathrm{CD} \times \mathrm{AC}=\frac{1}{2} \times 13 \times 31.2=202.8 \\ & \text { so } \angle \mathrm{ACD} \text { is } 90^{\circ} \end{aligned}$   Indicates understanding of the way Pythagoras' theorem can be used to prove that triangle ACD is right-angled eg   - If right-angled, $\mathrm{AC}^{2}+\mathrm{CD}^{2}=\mathrm{AD}^{2}$   - 1142.44   or   Shows that triangles ABC and $B C D$ are similar eg   - $5 \times 2.4=12$ and $12 \times 2.4=28.8$   so $A B C$ and $B C D$ are similar triangles	$\checkmark$ Minimally acceptable justification   eg   - $13^{2}+31.2^{2}=(28.8+5)^{2}$   ! For $2 m$ or 1m, use of trigonometry to show angle ACD is a right angle   Accept for 2 m provided both angle ACB and angle BCD are correctly evaluated and understanding is shown that they should sum to 90   Accept as correct for angle ACB values 67.4 or 67.38(...)   Accept as correct for angle BCD any value in the range 22.58 to 22.64 inclusive eg   - $\tan ^{-1} \frac{28.8}{12}+\tan ^{-1} \frac{5}{12}=67.4+22.6=90$   - 67.38 and 22.58 together make 90 Accept for 1 m either angle ACB or angle BCD correctly evaluated   $\checkmark$ For 1 m, follow through using their values for AC and CD from part (a)


Tier \& Question			Squares X		
3-5	4-6	5-7 6-8			
		15		Correct response	Additional guidance
		a	1 m	Gives a correct explanation   The most common correct explanations:   Give at least one counter-example for $9+y^{2}$ eg   - When $y=5,9+y^{2}=34$ which is not a square number   - Let $y=1,9+1=10$, and $\sqrt{ } 10$ is not an integer   State that $9+y^{2}$ only produces a square number for particular cases eg   - It is only true when $y=-4,0$ or 4   - It will only give the square numbers 9 or 25	$\checkmark$ Minimally acceptable explanation eg   -When $y=5,9+y^{2}=34$   $\times$ Incomplete explanation   eg   - $y^{2}$ is a square number, but adding 9 doesn't make it still a square number   $\times$ Incorrect explanation   eg   - It is only square when $y$ is 0
		b	(1m	Gives a correct explanation eg $16 y^{2}=(4 y)^{2}$   - Two square numbers multiplied make a square number, ie $a^{2} b^{2}=(a b)^{2}$, and 16 is $4^{2}$   - $\sqrt{ }\left(16 y^{2}\right)=4 y$	$\checkmark$ Minimally acceptable explanation   eg   - It's $4 y \times 4 y$   - You multiply by 4 before you square it   - $a^{2} b^{2}=(a b)^{2}$   - Two square numbers multiplied make a square number   $\mathbf{x}$ Incomplete explanation   eg   - $y^{2}$ is a square number and 16 is a square number   - $\sqrt{ } 16=4, \sqrt{ } y^{2}=y$   x Explanation lacks generality   eg   - $y=3,16 \times 3^{2}=144$ which is a square number


Tier \& Question					Cylinder
3-5	4-6 5-7	5-7 6-8			
		16		Correct response	Additional guidance
			3 m   or 2 m   or   1m	0.72 or $\frac{18}{25}$   Shows or implies a correct method, even if values are rounded or truncated prematurely eg   - $4.5 \div 2.5^{2}$   - $4.5 \pi \div 6.25 \pi$   - $14.1 \div 19.6$   Forms a correct equation relating the height and the volume of $4.5 \pi$   eg $2.5^{2} \times \pi \times h=4.5 \times \pi$   or   Shows or implies a correct method for calculating the area of the cross-section eg   . $2.5^{2} \pi$   - 19.6(...)	! Answer given as 0.7 or 0.71 (...)   Accept for 3 m only if a correct method, even if partial, or a more accurate value is seen   $\times$ For $2 m$, incorrect method   eg   - $5 \div 4.5 \pi \times 2=0.71$

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Tier \& Question} \& \& \& \multirow[t]{2}{*}{Triangle} <br>
\hline \multirow[t]{2}{*}{3-5} \& 4-6 \& 5-7 6-8 \& \& \& <br>
\hline \& \& 17 \& \& Correct response \& Additional guidance <br>
\hline \& \& \& 1 m

$1 m$
$1 m$

$1 m$ \& | Forms a correct equation for the equal sides, and shows a correct first step of algebraic manipulation |
| :--- |
| eg |
| - $a=4 b$ |
| - $b=\frac{a}{4}$ |
| - $8 b=2 a$ |
| Forms a correct equation for the perimeter of the triangle, and simplifies eg |
| - $3 a+14 b=91$ |
| - $5 a+6 b=91$ |
| - $22 b+a=91$ |
| - $26 b=91$ |
| - $6 \frac{1}{2} \times a=91$ |
| Gives both correct values, ie $a=14$ and $b=\frac{7}{2}$ or equivalent, even if these do not follow from a correct algebraic method | \& | ! Correct equation for the equal sides implied by equation for the perimeter but not stated explicitly |
| :--- |
| eg |
| - $26 b=91$ |
| - $6 \frac{1}{2} \times a=91$ |
| Award both the first and second marks | <br>

\hline
\end{tabular}

Index to mark schemes

Tier			Question	Page	
$3-5$	$4-6$	$5-7$	$6-8$		
1				Hexagons	10
2				Cities	10
3				Number cards	11
4				Late	12
5				Slicing cubes	13
6				Buying a bicycle	13
8	1			Kings and queens	14
7	2			School uniform	15
9	3			Admission	16
12	4			Cubes in bags	18
10	5			Temperature	18
11	6	1		Drawing	19
14	7	2		Ages	20
13	8	3		Grid percentages	22
15	9	4		Data collection	23
16	10	5		Coins	24
17	11	6		Explaining why	25
18	12	7		Water	26


Tier				Question	Page
$3-5$	$4-6$	$5-7$	$\mathbf{6 - 8}$		
	13	8	1	Ratio of ages	27
	14	9	2	Sizing	28
	15	10	3	Nets	29
	16	11	4	Beaches	30
	17	12	5	Equations	32
	18	13	6	Star design	33
	19	14	7	Ks and ms	34
		15	8	Giraffe	36
		16	9	Long-eared owls	38
		17	10	Pictures	39
		18	11	Coffee	40
		19	12	Cissoid of Diocles	42
			13	Populations	43
			14	Joining	44
			15	Squares X	45
			16	Cylinder	46
			17	Triangle	47

## NATIONAL

CURRICULUM
5-16

GCSE

GNVQ

GCE A LEVEL

First published in 2003
© Qualifications and Curriculum Authority 2003

Reproduction, storage, adaptation or translation, in any form or by any means, of this publication is prohibited without prior written permission of the publisher, unless within the terms of licences issued by the Copyright Licensing Agency. Excerpts may be reproduced for the purpose of research, private study, criticism or review, or by educational institutions solely for educational purposes, without permission, provided full acknowledgement is given.

Produced in Great Britain by the Qualifications and Curriculum Authority under the authority and superintendence of the Controller of Her Majesty's Stationery Office and Queen's Printer of Acts of Parliament.

The Qualifications and Curriculum Authority is an exempt charity under Schedule 2 of the Charities Act 1993.

Qualifications and Curriculum Authority
83 Piccadilly
London
W1J 8QA
www.qca.org.uk/

Further teacher packs may be purchased (for any purpose other than statutory assessment) by contacting:
QCA Publications, PO Box 99, Sudbury, Suffolk CO10 2SN
(tel: 01787 884444; fax: 01787 312950)

